
 » Home » Blog » Programming » Java EE JSF c:forEach vs ui:repeat

JSF c:forEach vs ui:repeat
By , Roger Keays 7 June 2007

This is probably one of the most frequently asked questions on the JSF mailing list. Why doesn't my

 Unfortunately, there are may ways to misuse the JSTL tags available tag work correctly?c:forEach

in JSF, so the answer isn't always simple. Here is an explanation of the differences between c:forEach

and , along with some examples which will hopefully save you some headaches.ui:repeat

TagHandlers vs Components

The most important thing to understand about the JSTL tags in JSF is that they do not represent

 and never become a part of the component tree once the view has been built. Rather, components

they are tags which are actually in the first place. Once they have responsible for building the tree

done their job they expire, are no more, cease to be, etc etc.

Here is a table of the semantics of several common tags. I just discovered, reading the Facelets code,

that validators and converters are classified separately. I had always thought they were just tag

handlers, but I imagine they behave in much the same way.

TagHandlers Components Other

c:forEach

c:choose

c:set

c:if

f:facet

f:actionListener

f:valueChangeListener

ui:include

ui:decorate

ui:composition

any custom tag file

ui:repeat

ui:fragment

ui:component

f:view

f:verbatim

f:selectItems

h:inputText

h:datatable

any custom UIComponent

f:validator

f:converter

One of the problems here is that there is no naming convention to indicate which tags correspond to

which constructs. You've just got to know, or find out.

When is the view built?

Now that you understand that tag handlers are only effective when the tree is built, the next logical

question should be well, when is tree built?

https://rogerkeays.com/
https://rogerkeays.com/blog
https://rogerkeays.com/programming
https://rogerkeays.com/java-jsf
https://rogerkeays.com/jsf-c-foreach-vs-ui-repeat
https://rogerkeays.com/jsf-c-foreach-vs-ui-repeat
https://rogerkeays.com/ox/webcore/users/UserViewer.xhtml?id=8282

The short answer is that a new view is built for every request which is not a postback. During a

postback, the view is reconstructed from saved state. Quite confusing, and not very obvious I know,

but there you have it.

Common laments

The most common pitfalls are either with the JSF lifecycle, EL evaluation or combining tag handlers

with components.

My always evaluates to falsec:if

<h:dataTable values="${numbers}" var="number">

 <h:column>

 <c:if test="${number > 5}">

 <h:outputText value="${number}"/>

 </c:if>

 </h:column>

</h:datatable>

Yes, the is always evaluating to false! But it is only ever evaluated once - when the tree is built. c:if

The component never makes it into the tree. Solution: replace the with:h:outputText c:if

<ui:fragment rendered="${number > 5}"> ... </ui:fragment>

You could also use the rendered attribute on the component in this example.h:outputText

My fails inside ui:include ui:repeat

<ui:repeat value="#{bean.items}" var="item">

 <ui:include src="#{item.src}"/>

</ui:repeat>

The EL for the is evaluated when the view is and is invalid since it relies on a variable ui:include built

only made available by the during . Use in this case.ui:repeat rendering c:forEach

My recursive tag never stops

myTag.xhtml:

 <ui:repeat value="${item.children} var="child">

 <eg:myTag item="${child}"/>

 </ui:repeat>

The stop condition in this recursion is supposed to be when you run out of children. The problem is

that the custom is just a tag handler, like a special version of . When the view is eg:myTag ui:include

built, the has no influence on the building process and can't stop the recursion. Use ui:repeat c:forEach

here instead of . Or better still, convert your tag file to a real .ui:repeat UIComponent

You might also recognise that the EL expression is meaningless during build time in this ${child}

example, unless you use .c:foreach

My list doesn't change size after deleting or adding an item

<h:form>

 <c:forEach items="${list}" var="item">

 <h:outputText value="${item.name}"/>

 </c:forEach>

 <h:commandButton value="Create new item" action="..."/>

 <h:commandButton value="Delete an item" action="..."/>

</h:form>

When your view was built you only had, say, 5 items. If you post back to this view and add or delete

an item, your view still has 5 components in it since it was restored from saved state. In h:outputText

this simple case, you should use and your tree will always contain one ui:repeat h:ouputText

component which is iterated over with differing values of .${item}

If you rely on using to dynamically include different form components you could run into c:forEach

difficulty. Always try to think about what the resulting tree looks like and remember it doesn't change

on a postback.

Suggestions for the future

Probably the best relief to this problem would be to come up with a better syntax or naming convention

to distinguish between tag handlers and components. I imagine you could also improve compilation

performance if you did this.

Secondly, we need better terminology. I've used the terms and in this blog tag handler component

which isn't too bad. The Facelets' FAQ [1] uses the terms and which build-time tags render-time tags

is a bit misleading because render-time tags (components) are involved in all phases of the JSF

lifecycle, not just the Render View phase.

Whatever happens, tag handlers are very useful (would you use facelets without ?) so let's ui:decorate

not get rid of them.

References

[1] http://wiki.java.net/.../FaceletsFAQ#Why_doesn_t_my_c_if_ui_repeat_ui

http://wiki.java.net/bin/view/Projects/FaceletsFAQ#Why_doesn_t_my_c_if_ui_repeat_ui

About Roger Keays

Roger Keays is an artist, an engineer, and a student of life. He has no fixed

addressand has leftfootprints on 40-something different countries around the world.

Roger is addicted to surfing. His other interests are music, psychology, languages, the

proper use of semicolons, and finding good food.

