
 » Home » Blog » Programming » Java EE EL vs Dependency Injection

EL vs Dependency Injection
By , Roger Keays 17 July 2007

One of the many useful utilities in Java EE is dependency injection - particularly for obtaining an

 for your persistent classes. However, as I've alluded in previous posts, my preference EntityManager

is still for the plain old Servlet stack with JPA, JSF and EL dropped in as jar files. That means no

dependency injection for me!

I am aware that there are existing inversion of control containers which might be able to solve this

particular problem and which are certainly buzz-word compliant. Unfortunately, I couldn't really see

that all the additional configuration was actually simplifying the job for me.

So, is there a another way?...

My alternative solution has been to go back to the traditional reference-by-name paradigm we all used

with JNDI, except by replacing JNDI with EL. Using EL from Java allows me not only to 'inject'

s, but also any configuration variable or bean which can be accessed from the EntityManager

. When coupled with the pluggable EL resolver, its actually hard to think of use cases where ELContext

I use EL.couldn't

Here is some sample code to resolve an :EntityManager

public List<Object> getObjects() {

 EntityManager em = eval("${em}", EntityManager.class);

 return em.createQuery("SELECT e FROM Entity e").getResultList();

}

In my code, I'm simply using a to insert the into the request scope, although you RequestFilter ${em}

could equally use a custom to resolve this variable. The method is a static import ELResolver eval()

which looks like this:

/**

 * Shorthand for Application.evaluateExpressionGet(...) which

 * automatically casts the result to expected type and uses the current

 * FacesContext for evaluating the expression.

 *

 * @param expression the EL expression to evaluate

 * @param clazz the expected resultant class

 */

 public static <T extends Object> T eval(String expression,

https://rogerkeays.com/
https://rogerkeays.com/blog
https://rogerkeays.com/programming
https://rogerkeays.com/java-jsf
https://rogerkeays.com/blog/el-vs-dependency-injection
https://rogerkeays.com/blog/el-vs-dependency-injection
https://rogerkeays.com/ox/webcore/users/UserViewer.xhtml?id=8282

 Class<T> clazz) {

 return (T) FacesContext.getCurrentInstance().getApplication().

 evaluateExpressionGet(FacesContext.getCurrentInstance(),

 expression, clazz);

 }

There are also fewer limitations on where EL can be used compared to dependency injection. It can

be used whenever an is available, and in a JSF application that is practically anywhere. I ELContext

use EL for configuring beans which avoids the use of static variables that can break an application

when a shared classloader is being used.

/** remove the file from the filesystem when deleting */

@PreRemove public void deleteFile() {

 String dir = eval("${config['uploadsDir']}", String.class);

 File file = new File(dir, id.toString());

 file.delete();

}

Using EL also makes your code more readable, and your beans scope-independent. Here is a snippet

of the first few lines of an from some code which doesn't use EL:ActionListener

/* initial values */

context = FacesContext.getCurrentInstance().getExternalContext();

item = (Content) context.getRequestMap().get("item");

site = (Site) context.getApplicationMap().get("site");

em = (EntityManager) context.getRequestMap().get("em");

and the equivalent using EL:

/* initial values */

item = eval("${item}", Content.class);

site = eval("${site}", Site.class);

em = eval("${em}", EntityManager.class);

Probably my favourite advantage of using EL is that it simplifies the problem of referencing items in an

iterated context. For example, given the following template:

<h:dataTable value="${items}" var="${item}">

 <h:column>

 <h:commandButton action="delete" value="Delete this Item"/>

 </h:column>

 ...

</h:dataTable>

You can resolve the selected item in your action simply by doing this:

Object item = eval("${item}");

There doesn't seem to be much opinion out on using EL from within Java. I've found it a really great

way to make my code more readable and patterns more repeatable. Personally, I'd love to see it

become a part of the language!

What do you think? I've given some of the advantages of EL, how about some disadvantages?

Performance anybody? Type safety? Tell me why I shouldn't keep using this pattern.

Note: the method shown above is available in the .eval() Furnace Webapp Framework

About Roger Keays

Roger Keays is an artist, an engineer, and a student of life. He has no fixed

addressand has leftfootprints on 40-something different countries around the world.

Roger is addicted to surfing. His other interests are music, psychology, languages, the

proper use of semicolons, and finding good food.

https://rogerkeays.com/products/furnace

