
 » Home » Blog » Programming » Java EE Faking a Postback with JSF + Facelets

Faking a Postback with JSF + Facelets
By , Roger Keays 27 February 2007

Have you ever needed to post a form to a different URL with JSF? How about posting a form action

from an email or when a session has expired? The JSF spec doesn't allow for these situations

because it requires a view to be present in the user's session before the complete lifecycle will be

invoked. Here's a handy trick using an extended Facelets that allows you to make a fake ViewHandler

postback to a view that doesn't yet exist in the user's session.

The motivation for this exercise was to implement a "quick subscribe" form for a mailing list in the

sidebar of a site. I had already implemented a thorough form, validations and actions which I wanted

to reuse as much as I could. In fact, all I wanted was a small version of the form that would operate in

exactly the same way as the main form, except the results of posting the small form would land the

user on the page showing the main form.

JSF doesn't allow you to specify the attribute of a form, but you can always create your own action

 tag by hand and set the attribute manually. By reproducing the request parameters as <form> action

they appear in the real form, you can trick JSF into thinking the original form was submitted. Here is an

example of the quick subscribe form I've implemented:

<!--

 A miniature version of the subscription form. Variable names

 must match the actual subscription form for the fack postback

 to work properly. The $list variable should be a number which

 is the index of the list to subscribe to from the real form.

 -->

 <form id="fb-quickSubscribe" action="modules/lists/user/subscriptions.jsf">

 <input type="hidden" name="javax.faces.ViewState" value="0:0"/>

 <input type="hidden" name="subscriptions" value="subscriptions"/>

 <input type="hidden" name="submit" value="Submit"/>

 <input type="hidden" name="lists:${list}:subscribe" value="true"/>

 <input type="text" id="name" name="name" value="name" max="255"/>

 <input type="text" id="email" name="email" value="email" max="319"/>

 <input type="image" id="submit" src="modules/core/icons/send.png" width="16" height="16"/>

 </form>

At first, once you've magically crafted your parameters to imitate the form you might think you've

finished and the problem is solved. Unfortunately though, it may only be working because you've

https://rogerkeays.com/
https://rogerkeays.com/blog
https://rogerkeays.com/programming
https://rogerkeays.com/java-jsf
https://rogerkeays.com/blog/faking-a-postback-with-jsf-facelets
https://rogerkeays.com/blog/faking-a-postback-with-jsf-facelets
https://rogerkeays.com/ox/webcore/users/UserViewer.xhtml?id=8282

visited the real form's page and this has created a view for the form in your session. If there is no such

view already created, this method will fail because the method will return null and the restoreView()

complete lifecycle will not be invoked.

Enter Facelets. Facelets (unlike the JSP ViewHandler) was designed sensibly to separate page

rendering into two phases - and . We can, in fact, build the view at any time in the build render

lifecycle. This means we can create an extended which overrides to build a ViewHandler restoreView()

view for us if one doesn't already exist:

public class SeamlessViewHandler extends FaceletViewHandler {

 /** constructor */

 public SeamlessViewHandler(ViewHandler parent) {

 super(parent);

 }

 /**

 * To allow the user to postback to a view which was not rendered in the

 * first place, or has expired, we modify the default restoreView

 * method to build a new view if there was not one to restore. This

 * allows us to invoke the full JSF lifecycle on an initial page view,

 * which is useful for email forms and doing 'fake' postbacks.

 */

 public UIViewRoot restoreView(FacesContext context, String viewId) {

 UIViewRoot viewRoot = super.restoreView(context, viewId);

 if (viewRoot == null) {

 viewRoot = createView(context, viewId);

 context.setViewRoot(viewRoot);

 try {

 this.buildView(context, viewRoot);

 context.getExternalContext().getRequestMap().put(

 "seamless.viewBuilt", getRenderedViewId(context, viewId));

 } catch (IOException ioe) {

 log.log(Level.SEVERE, "Error Building View", ioe);

 }

 }

 return viewRoot;

 }

 /* only build the view if it wasn't built by restoreView */

 protected void buildView(FacesContext context, UIViewRoot viewToRender)

 throws IOException, FacesException {

 String viewId = getRenderedViewId(context, viewToRender.getViewId());

 String viewBuilt = (String) context.getExternalContext()

 .getRequestMap().get("seamless.viewBuilt");

 if (viewBuilt == null || !viewId.equals(viewBuilt)) {

 super.buildView(context, viewToRender);

 }

 }

}

Voila! The key ingredient to making our fake postbacks work. Have a go yourself by submitting the

.subscription form using this link

This view handler is a part of the . Please feel free to use it in your own Furnace Webapp Framework

applications!

About Roger Keays

Roger Keays is an artist, an engineer, and a student of life. He has no fixed

addressand has leftfootprints on 40-something different countries around the world.

Roger is addicted to surfing. His other interests are music, psychology, languages, the

proper use of semicolons, and finding good food.

https://rogerkeays.com/
https://rogerkeays.com/
https://rogerkeays.com/products/furnace

