
 » Home » Blog » Programming » Linux Monitoring the JVM with SNMP

Monitoring the JVM with SNMP
By , Roger Keays 21 January 2007

Since Java 1.5, Sun's JVM has included an SNMP agent which is quite handy for keeping an eye on

your Java apps using your existing monitoring toolset. Here's how to set up OpenNMS to monitor an

app server and produce pretty graphs such as the one below, alongside your other SNMP collected

metrics like CPU load and memory usage.

1. Install OpenNMS

First you need to install OpenNMS [1] onto the machine which is going to do the monitoring.

OpenNMS is not difficult to install if you've had any experience with maven and Tomcat. Their website

covers installation fairly accurately, so I'll skip this step and go straight into how to setup the JVM.

2. Enable Java SNMP

Enabling the SNMP agent on the JVM is pretty simple [2], and can be done adding either -Dcom.sun.

 or to the java management.snmp.port=161 -Dcom.sun.management.config.file=snmp.properties

command line. Using the first method gives you an SNMP agent with all the defaults, which includes

only listening on the loopback interface. Using the second method allows you to specify a few more

properties in the file (or any other file of your choice).snmp.properties

For this task, I wanted SNMP on port 1161 since the app server runs as an underprivileged user and I

already had another agent on port 161. I also needed to listen on all interfaces because the machine is

being monitored remotely. Finally, since my firewall keeps out unwanted guests, I've also disabled the

access-control list. The complete file looks like this:snmp.properties

com.sun.management.snmp.interface=0.0.0.0

com.sun.management.snmp.port=1161

com.sun.management.snmp.acl=false

Test your configuration by trying to query the Java SNMP agent first from the localhost, then from the

monitoring machine:

https://rogerkeays.com/
https://rogerkeays.com/blog
https://rogerkeays.com/programming
https://rogerkeays.com/linux
https://rogerkeays.com/blog/monitoring-the-jvm-with-snmp
https://rogerkeays.com/blog/monitoring-the-jvm-with-snmp
https://rogerkeays.com/ox/webcore/users/UserViewer.xhtml?id=8282
https://rogerkeays.com/blog/monitoring_jvm

1.

2.

3.

4.

$ snmpwalk -c public -v2c java.example.com:1161 .1.3.6.1.4.1.42.2.145.3.163.1.1.4.1

SNMPv2-SMI::enterprises.42.2.145.3.163.1.1.4.1.0 = STRING: "pid@host"

3. Configure OpenNMS

Next, we need to configure OpenNMS, which is a little more involved. Conceptually, there are four

steps:

Configure the capabilities daemon to look for the snmp-jvm service on your chosen port (capsd-

).configuration.xml

Configure the collect daemon to fetch data for this service ().collectd-configuration.xml

Configure the OIDs for the data you want to collect ().datacollection-config.xml

Configure the snmp graphs to display the collected values ().snmp-graph.properties

capsd configuration

This tells OpenNMS to look for the SNMP agent you have set up. Add the following configuration to

, restart OpenNMS and rescan the host's services using the web interface. capsd-configuration.xml

You should see a new service 'SNMP-JVM' on the host.

<protocol-plugin protocol="SNMP-JVM" class-name="org.opennms.netmgt.capsd.plugins.SnmpPlugin"

 scan="on" user-defined="false">

 <property key="timeout" value="5000" />

 <property key="retry" value="3" />

 <property key="port" value="1161" />

 <property key="vbname" value=".1.3.6.1.4.1.42.2.145.3.163.1.1.4.1" />

</protocol-plugin>

collectd configuration

To tell OpenNMS to actually collect the data from this service, you have to add the following to the

 file.collectd-configuration.xml

<service name="SNMP-JVM" interval="300000" user-defined="false" status="on">

 <parameter key="collection" value="jvm"/>

 <parameter key="port" value="1161"/>

 <parameter key="retry" value="3"/>

 <parameter key="timeout" value="3000"/>

 <parameter key="oid" value=".1.3.6.1.4.1.42.2.145.3.163.1.1.4.1"/>

</service>

OID configuration

You also need to decide what data you want to monitor by reading the Java MIB [3]. Here are the

values I chose to monitor:

Variable OID

jvmMemoryHeapUsed 1.3.6.1.4.1.42.2.145.3.163.1.1.2.11

jvmMemoryHeapCommitted 1.3.6.1.4.1.42.2.145.3.163.1.1.2.12

jvmMemoryHeapMaxSize 1.3.6.1.4.1.42.2.145.3.163.1.1.2.13

jvmMemoryNonHeapUsed 1.3.6.1.4.1.42.2.145.3.163.1.1.2.21

jvmMemoryNonHeapCommited 1.3.6.1.4.1.42.2.145.3.163.1.1.2.22

jvmMemoryNonHeapMaxSize 1.3.6.1.4.1.42.2.145.3.163.1.1.2.23

jvmThreadCount 1.3.6.1.4.1.42.2.145.3.163.1.1.3.1

This information is added to with the snippet below. An entire datacollection-config.xml <snmp-

 needs to be created, because the jvm SNMP agent doesn't include a system table that collection/>

might be used to distinguish it as a unique system in the default data collection.

<snmp-collection name="jvm" maxVarsPerPdu="10" snmpStorageFlag="primary">

 <rrd step="300">

 <rra>RRA:AVERAGE:0.5:1:8928</rra>

 <rra>RRA:AVERAGE:0.5:12:8784</rra>

 <rra>RRA:MIN:0.5:12:8784</rra>

 <rra>RRA:MAX:0.5:12:8784</rra>

 </rrd>

 <groups>

 <group name="jvm" ifType="all">

 <mibObj oid=".1.3.6.1.4.1.42.2.145.3.163.1.1.2.11" instance="0" alias="jvmHeapUsed" type="Gauge64" />

 <mibObj oid=".1.3.6.1.4.1.42.2.145.3.163.1.1.2.12" instance="0" alias="jvmHeapCommitted" type="Gauge64" />

 <mibObj oid=".1.3.6.1.4.1.42.2.145.3.163.1.1.2.13" instance="0" alias="jvmHeapMax" type="Gauge64" />

 <mibObj oid=".1.3.6.1.4.1.42.2.145.3.163.1.1.2.21" instance="0" alias="jvmNonHeapUsed" type="Gauge64" />

 <mibObj oid=".1.3.6.1.4.1.42.2.145.3.163.1.1.2.22" instance="0" alias="jvmNonHeapCommitted" type="Gauge64" />

 <mibObj oid=".1.3.6.1.4.1.42.2.145.3.163.1.1.2.23" instance="0" alias="jvmNonHeapMax" type="Gauge64" />

 <mibObj oid=".1.3.6.1.4.1.42.2.145.3.163.1.1.3.1" instance="0" alias="jvmThreadCount" type="Gauge64" />

 </group>

 </groups>

 <systems>

 <systemDef name="JVM">

 <sysoidMask></sysoidMask>

 <collect>

 <includeGroup>jvm</includeGroup>

 </collect>

 </systemDef>

 </systems>

</snmp-collection>

Now restart OpenNMS and look for the new RRD data files in to make sure the share/rrd/**/jvm*

collection is working. Also check the file for error messages.collectd.log

Creating graphs

Phew! Almost there. If your RRD files are being created all you have to do is edit the snmp-graph.

 config file and reload the graphs page. Here's the configuration I used to create the graphs properties

in this blog:

report.jvm.heap.name=JVM Heap Memory

report.jvm.heap.columns=jvmHeapUsed, jvmHeapCommitted, jvmHeapMax

report.jvm.heap.type=nodeSnmp

report.jvm.heap.command=--title="JVM Heap Memory" \

 DEF:used={rrd1}:jvmHeapUsed:AVERAGE \

 DEF:comm={rrd2}:jvmHeapCommitted:AVERAGE \

 DEF:max={rrd3}:jvmHeapMax:AVERAGE \

 AREA:used#0000ff:"Used " \

 GPRINT:used:AVERAGE:" Avg \\: %5.2lf %s" \

 GPRINT:used:MIN:"Min \\: %5.2lf %s" \

 GPRINT:used:MAX:"Max \\: %5.2lf %s\\n" \

 LINE2:comm#00ff00:"Committed" \

 GPRINT:comm:AVERAGE:" Avg \\: %5.2lf %s" \

 GPRINT:comm:MIN:"Min \\: %5.2lf %s" \

 GPRINT:comm:MAX:"Max \\: %5.2lf %s\\n" \

 LINE2:max#ff0000:"Max " \

 GPRINT:max:AVERAGE:" Avg \\: %5.2lf %s" \

 GPRINT:max:MIN:"Min \\: %5.2lf %s" \

 GPRINT:max:MAX:"Max \\: %5.2lf %s\\n"

report.jvm.nonheap.name=JVM Non-Heap Memory

report.jvm.nonheap.columns=jvmNonHeapUsed, jvmNonHeapCommitted, jvmNonHeapMax

report.jvm.nonheap.type=nodeSnmp

report.jvm.nonheap.command=--title="JVM Non-Heap Memory" \

 DEF:used={rrd1}:jvmNonHeapUsed:AVERAGE \

 DEF:comm={rrd2}:jvmNonHeapCommitted:AVERAGE \

 DEF:max={rrd3}:jvmNonHeapMax:AVERAGE \

 AREA:used#0000ff:"Used " \

 GPRINT:used:AVERAGE:" Avg \\: %5.2lf %s" \

 GPRINT:used:MIN:"Min \\: %5.2lf %s" \

 GPRINT:used:MAX:"Max \\: %5.2lf %s\\n" \

 LINE2:comm#00ff00:"Committed" \

 GPRINT:comm:AVERAGE:" Avg \\: %5.2lf %s" \

 GPRINT:comm:MIN:"Min \\: %5.2lf %s" \

 GPRINT:comm:MAX:"Max \\: %5.2lf %s\\n" \

 LINE2:max#ff0000:"Max " \

 GPRINT:max:AVERAGE:" Avg \\: %5.2lf %s" \

 GPRINT:max:MIN:"Min \\: %5.2lf %s" \

 GPRINT:max:MAX:"Max \\: %5.2lf %s\\n"

report.jvm.threads.name=JVM Threads

report.jvm.threads.columns=jvmThreadCount

report.jvm.threads.type=nodeSnmp

report.jvm.threads.command=--title="JVM Thread Count" \

 DEF:threads={rrd1}:jvmThreadCount:AVERAGE \

 LINE2:threads#0000ff:"Threads" \

 GPRINT:threads:AVERAGE:" Avg \\: %8.2lf %s" \

 GPRINT:threads:MIN:"Min \\: %8.2lf %s" \

 GPRINT:threads:MAX:"Max \\: %8.2lf %s\\n"

Add these report definitions towards the end of the file, and their names (, and jvm.heap jvm.nonheap

) to the list at the top of the file to have them display on the graphs page.jvm.threads

JMX Monitoring

OpenNMS also does JMX monitoring, but this is likely to be the subject of another blog post.

Unfortunately, AFAICT, it does not yet have support for which means we can't (yet) CompositeTypes

collect heap and non-heap usage via the managed bean.Memory

References

[1] http://www.opennms.org

[2] http://java.sun.com/j2se/1.5.0/docs/guide/management/SNMP.html

[3] http://java.sun.com/j2se/1.5.0/docs/guide/management/JVM-MANAGEMENT-MIB.mib

About Roger Keays

Roger Keays is an artist, an engineer, and a student of life. He has no fixed

addressand has leftfootprints on 40-something different countries around the world.

Roger is addicted to surfing. His other interests are music, psychology, languages, the

proper use of semicolons, and finding good food.

http://www.opennms.org
http://java.sun.com/j2se/1.5.0/docs/guide/management/SNMP.html
http://java.sun.com/j2se/1.5.0/docs/guide/management/JVM-MANAGEMENT-MIB.mib

