
 » Home » Blog » Programming » Testing How To Sort Your Unit Tests By Layer In TestNG

How To Sort Your Unit Tests By Layer In TestNG
By , Roger Keays 11 October 2012

Each of my extends from a different unit tests

 depending on what layer of my base class

application they are testing. i.e.

BaseTest

 `- BaseDBTest

 `- BaseOpsTest

 `- BaseUITest

These superclasses are very convenient places

to put like starting a server, shared test code

opening the database, doing a HTTP get or

even just checking that is enabled.assert

When testing the whole application, it doesn't

make much sense to me to run tests from all

layers in . There are clear random order

dependencies between the layers and if a lower

layer fails I want to know about it it blows before

up into the upper layers (if you believe its better

to mock unit test dependencies then you might as well stop reading now).

Since I use to run my tests there is no and that's the way I like it. maven's surefire plugin testng.xml

The problem is setting up TestNG dependencies in the tests to get them to run in the right order.

The brute force approach is to add and attributes to every leaf test class. groups dependsOnGroups

Unfortunately you can't put them on the superclasses because they inherit each other and you end up

with circular dependencies.

@Test(groups={"DB"})

public class WidgetDBTest extends BaseDBTest {}

@Test(groups={"UI"}, dependsOnGroups={"DB"})

public class WidgetUITest extends BaseUITest {}

This works fine except when you want to run alone. TestNG will fail because the test WidgetUITest

depends on a non-existing group called "DB". doesn't help us here because the AlwaysRun

https://rogerkeays.com/
https://rogerkeays.com/blog
https://rogerkeays.com/programming
https://rogerkeays.com/testing
https://rogerkeays.com/how-to-sort-your-unit-tests-by-layer-in-testng
https://rogerkeays.com/how-to-sort-your-unit-tests-by-layer-in-testng
https://rogerkeays.com/ox/webcore/users/UserViewer.xhtml?id=8282

dependency doesn't fail - it just can't be found, and isn't implemented for IgnoreMissingDependencies

groups.

The best workaround I found for this problem is to put an empty test in the base class which ensures

that a test group for each layer is always created:

public class BaseTest {

 @Test(groups={"Java", "DB", "Ops", "UI"})

 public void create_test_groups() {}

}

You can stop there if you're happy with that solution. Personally I don't see why I should annotate all

my subclasses when they all have the same superclass, so I took advantage of TestNG's

 listener like this:IAnnotationTransformer

public class TestGrouper implements IAnnotationTransformer {

@Override

public void transform(ITestAnnotation test, Class testClass,

Constructor c, Method method) {

// get the class this test is on

Class layer;

if (method != null) {

layer = method.getDeclaringClass();

} else if (c != null) {

layer = c.getDeclaringClass();

} else if (testClass != null) {

layer = testClass;

} else {

throw new IllegalArgumentException(

"Couldn't find declaring class for test");

}

// setup layer groups based on the test class

String addGroup = null;

String addDepends = null;

if (BaseUITest.class.isAssignableFrom(layer)) {

addGroup = "UI";

addDepends = "Ops";

} else if (BaseOpsTest.class.isAssignableFrom(layer)) {

addGroup = "Ops";

addDepends = "DB";

} else if (BaseDBTest.class.isAssignableFrom(layer)) {

addGroup = "DB";

addDepends = "Java";

} else if (BaseTest.class.isAssignableFrom(layer)) {

addGroup = "Java";

}

// append to existing groups and dependencies

if (addGroup != null) {

int length = test.getGroups().length;

String [] groups = new String[length + 1];

System.arraycopy(test.getGroups(), 0, groups, 0, length);

groups[length] = addGroup;

test.setGroups(groups);

}

if (addDepends != null) {

int length = test.getDependsOnGroups().length;

String [] depends = new String[length + 1];

System.arraycopy(test.getDependsOnGroups(), 0, depends, 0, length);

depends[length] = addDepends;

test.setDependsOnGroups(depends);

// TestNG has no way to ignore group dependencies, so this method

// relies on the superclass to setup test groups with

// @Test(groups={"Java", "DB", "..."})

}

}

}

Since I'm launching from maven this listener goes in the plugin configuration. Otherwise you pom.xml

pass it to TestNG with on the command line.-listener

 <!-- unit test configuration -->

 <plugin>

 <artifactId>maven-surefire-plugin</artifactId>

 <version>2.12</version>

 <configuration>

 <properties>

 <property>

 <name>listener</name>

 <value>com.example.TestGrouper</value>

 </property>

 </properties>

 </configuration>

 </plugin>

I would have liked to implement this with test , but TestNG buckets test priorities AFTER it priorities

calculates dependencies so it ends up running UI tests with no dependencies before DB tests with

dependencies even though the DB tests have higher priority.

On the other hand, the grouping method is useful for reporting and testing individual layer groups.

About Roger Keays

Roger Keays is an artist, an engineer, and a student of life. He has no fixed

addressand has leftfootprints on 40-something different countries around the world.

Roger is addicted to surfing. His other interests are music, psychology, languages, the

proper use of semicolons, and finding good food.

