
1.

2.

3.

4.

 » Home » Blog » Programming » Java EE Preserving JSF Request Parameters and REST URLs

Preserving JSF Request Parameters and REST URLs
By , Roger Keays 13 February 2013

Have you ever used a URL pattern something like this?

http://localhost/app/widgets/WidgetEditor.xhtml?id=300

or perhaps this?

http://localhost/app/widgets/300/edit

Well, as a JSF developer you've probably already realized a little problem. How do you remember

 from request to request? There are a few simple solutions.the id

Put the entity in the session scope when you first fetch it and forget the id. This method creates

a user session for every request and doesn't support multiple browser tabs.

Put the entity in the view scope when you first fetch it. This method supports multiple tabs but

still create a session for every user.

Use plain old to remember the id:HTML hidden input field

<input type="hidden" name="id" value="${param.id}"/>

This works just fine until you start adding other request parameters like ?

 and forget to add the hidden fields to retain them. It's also a weird type=blue¤cy=AUD

mix of JSF and HTML.

Add an f:param to the command button. This also works fine as long as you remember to add

the parameter to every command button:

<h:commandButton action="${bean.save}" value="Save">

 <f:param name="id" value="${param.id}"/>

</h:commandButton>

But there could be a better way.

Your , even if that state is simply "what page am I on". URLs inevitably encode some sort of state

Out of the box, JSF got this right. All forms are posted back to the original View ID. But this doesn't tell

the whole story because and we lose state that is encoded in the View ID is not the Request URL

request parameters or RESTful URL schemes like ./app/widgets/300/edit

https://rogerkeays.com/
https://rogerkeays.com/blog
https://rogerkeays.com/programming
https://rogerkeays.com/java-jsf
https://rogerkeays.com/preserving-jsf-request-parameters-and-rest-urls
https://rogerkeays.com/preserving-jsf-request-parameters-and-rest-urls
https://rogerkeays.com/ox/webcore/users/UserViewer.xhtml?id=8282

We can fix this fairly easily.

All we need to do is instead of the View ID and we're done. post back to the original Request URL

The forms come out looking like:

<form action="/app/widgets/WidgetEditor.xhtml?id=300&type=blue">..</form>

or

<form action="/app/widgets/300/edit">..</form>

instead of

<form action="/app/widgets/WidgetEditor.xhtml"/>..</form>

To do this in JSF you need to implement a custom method that ViewHandler#getActionURL()

looks like this:

/**

 * We always post back to the original Request URL, not the viewID

 * since we sometimes encode state in the Request URL such as object id,

 * page number, etc.

 */

@Override

public String getActionURL(FacesContext faces, String viewID) {

 HttpServletRequest request = (HttpServletRequest)

 faces.getExternalContext().getRequest();

 // remaining on the same view keeps URL state

 String requestViewID = request.getRequestURI().substring(

 request.getContextPath().length());

 if (requestViewID.equals(viewID)) {

 // keep RESTful URLs and query strings

 String action = (String) request.getAttribute(

 RequestDispatcher.FORWARD_REQUEST_URI);

 if (action == null) {

 action = request.getRequestURI();

 }

 if (request.getQueryString() != null) {

 return action + "?" + request.getQueryString();

 } else {

 return action;

 }

 } else {

 // moving to a new view drops old URL state

 return super.getActionURL(faces, viewID);

 }

}

Depending on your app, you might like to preserve request parameters across views also.

Your ViewHandler should extend ViewHandlerWrapper and be registered in like so:faces-config.xml

<application>

 <view-handler>com.example.MyViewHandler</view-handler>

</application>

That's it. You can stop worrying about losing the state in your URLs. If you deploy this code you will

want to step through it in a debugger to confirm it works correctly for your JSF/webapp configuration.

Have fun.

About Roger Keays

Roger Keays is an artist, an engineer, and a student of life. He has no fixed

addressand has leftfootprints on 40-something different countries around the world.

Roger is addicted to surfing. His other interests are music, psychology, languages, the

proper use of semicolons, and finding good food.

