
 » Home » Blog » Programming » Java EE Composing Components with Facelets

Composing Components with Facelets
By , Roger Keays 11 December 2006

One of my favourite features of Facelets is how compositions of JSF components can be arranged

and reused in various ways. The icing on the cake is, of course, that as well as including and

decorating these compositions, you can put them in tag files and use them as if they were native JSF

components. Not only this, but your tag files can also be packaged into a jar and reused across all

your projects. It's like the instant noodles of JSF components!

Well, that's a lot of terminology to throw around in the first paragraph of a blog (I hope I got it all right)

so lets have a look at an example so you can see what I mean.

What we're going to do here is build a quick, but quite flexible popup menu made entirely out of

Facelets tag files. Our menu will be activated when you right-click on either a region of text, or an

image which indicates the menu is available. Also, we want to leave the possibility open that the

context menu might be used to display something other than a menu (a form for example).

Here's a sneak peak of the result, so you can get the idea of what I'm talking about.

Our menu relies mostly on css styles to show and hide it, plus a little bit of javascript to apply those

styles. The css is basically just this (although we'll add some other styles to make it look acceptable):

.fb-context-box { display: none; position: absolute; }

.fb-context-box-open { display: block; }

To meet all our requirements, we're going to create the following 'components':

Component Description

contextRegion Renders an area which, when right-clicked, activates a or contextBox contextMenu.

https://rogerkeays.com/
https://rogerkeays.com/blog
https://rogerkeays.com/programming
https://rogerkeays.com/java-jsf
https://rogerkeays.com/blog/composing-components-with-facelets
https://rogerkeays.com/blog/composing-components-with-facelets
https://rogerkeays.com/ox/webcore/users/UserViewer.xhtml?id=8282

The activated component must be a child of this .contextRegion

contextPoint This operates in a similar way to a , except it renders a small menu icon contextRegion

which opens the or on right click.contextBox contextMenu

contextBox This component renders a for a generic context popup box. It also renders div

javascript to deactivate the popup on the event.mouseout

contextMenu This is just a to arrange menu items in a context menu. It wraps itself in a panelGrid

 and would normally appear as part of a or .contextBox contextRegion contextPoint

contextMenuItem Single item for the , with an optional icon.contextMenu

You can have a look at the if you want to see the source of those attached sample webapp

components. It's just a bunch of s and s with the odd thrown in. To make div panelGroup graphicImage

them available to Facelets, we create a taglib file in WEB-INF which looks something like this:

<facelet-taglib>

 <namespace>https://rogerkeays.com/blog/composing_components</namespace>

 <tag>

 <tag-name>contextBox</tag-name>

 <source>tags/contextBox.xhtml</source>

 </tag>

 <tag>

 <tag-name>contextMenu</tag-name>

 <source>tags/contextMenu.xhtml</source>

 </tag>

</facelet-taglib>

Facelets will search the classpath for *.taglib.xml files, but in this case we haven't put ours on the

classpath, so we just reference it in web.xml:

<context-param>

 <param-name>facelets.LIBRARIES</param-name>

 <param-value>/WEB-INF/contextMenus.taglib.xml;</param-value>

</context-param>

Voila! That's it. Our components are ready to use. I created the menu's in the screenshot using the

following code:

<h:panelGrid columns="2">

 <h:panelGroup>

 <m:contextPoint>

https://rogerkeays.com/apps/cms/attachments/7691/contextMenu-1.0.0.war

 <m:contextMenu>

 <m:contextMenuItem image="icons/create.png">Create</m:contextMenuItem>

 <m:contextMenuItem image="icons/edit.png">Edit</m:contextMenuItem>

 <m:contextMenuItem image="icons/delete.png">Delete</m:contextMenuItem>

 </m:contextMenu>

 </m:contextPoint>

 <h:outputText value="A menu on a context point"/>

 </h:panelGroup>

 <h:panelGroup>

 <m:contextPoint>

 <m:contextBox>

 Your name: <h:inputText size="20"/>

 </m:contextBox>

 <h:outputText value="An arbitrary popup on a context point"/>

 </m:contextPoint>

 </h:panelGroup>

 <m:contextRegion>

 <m:contextMenu title="choose...">

 <m:contextMenuItem image="icons/create.png">Create</m:contextMenuItem>

 <m:contextMenuItem image="icons/edit.png">Edit</m:contextMenuItem>

 <m:contextMenuItem image="icons/delete.png">Delete</m:contextMenuItem>

 </m:contextMenu>

 <h:outputText value="A menu on a context region"/>

 </m:contextRegion>

 <m:contextRegion>

 <m:contextBox>

 Your name: <h:inputText size="20"/>

 </m:contextBox>

 <h:outputText value="An arbitrary popup on a context point"/>

 </m:contextRegion>

</h:panelGrid>

Although we could put these components into a jar, it's only going to be of limited use since our static

css and image resources won't be accessible. Rumour has it that Facelets 1.2 will have support for

serving static resources out of a jar so keep an eye out for that one.

You can if you want to have a closer look at the code, download an operational war of these menus

but please note that the purpose of this blog is simply to demonstrate Facelet's component

composition features. These menu components are not production ready! For starters you have to

https://rogerkeays.com/apps/cms/attachments/7691/contextMenu-1.0.0.war

deal with IE's z-index defects properly and you'd also want to improve the way mouse exits are

handled.

About Roger Keays

Roger Keays is an artist, an engineer, and a student of life. He has no fixed

addressand has leftfootprints on 40-something different countries around the world.

Roger is addicted to surfing. His other interests are music, psychology, languages, the

proper use of semicolons, and finding good food.

