
1.

2.

3.

 » Home » Blog » Programming » SQL EntityManager Per Session Pattern

EntityManager Per Session Pattern
By , Roger Keays 28 January 2007

A recent webapp I was working on had a fairly simple requirement for a paged table of data from the

database. Because of the large amount of data available it couldn't just all be loaded into memory at

once, which means a bit more work on the UI side. So rather than write all the plumbing to manage

paging and queries I thought I'd give OpenJPA's Large Result Sets (LRS) a try. A LRS is a List which

looks and behaves like all the data is already loaded, but is actually fetching it on the fly using

database cursors. It all worked wonderfully, except for a few.. erm.. slight problems using the

EntityManager-per-session pattern, which is required to keep the LRS open.

In retrospect I suppose it's fairly obvious, but using a LRS with one em-per-session has fairly serious

scalability problems. Each session in this app held a LRS open which meant consuming one database

connection per session. This would be fine if you were only expect a handful of concurrent sessions,

but when testing this application under load, it couldn't handle more than about 150 sessions.

Further problems were unearthed when the LRSs sometimes mysteriously closed themselves leaving

no rhyme or reason as to why. Under some circumstances the problem was reproduceable and was

rectified by changing the transaction isolation level. It seems that a concurrency issue caused the

database to close cursors after transaction commits occured in a problematic order. The only reliable

solution was to place a per-session mutex on the entire JSF Render Response phase, so that each

user could only render pages containing the dataTable sequentially.

Finally, there was the issue of memory usage. While it's great that a LRS lazy-loads the data, how

much sense does it make to keep this in the session scope? Well, the answer to that depends on how

long your users' sessions are, and how much variation there is on that average. Generally though,

you'll end up with a whole lot of data in memory that nobody is viewing any longer and it'll be there

until the session times out.

So, in summary, I found three problems using the em-per-session pattern:

Scalability issues, since each session requires a new connection and we need to handle 500+

simultaneous sessions.

Concurrency issues in which, depending on the transaction isolation level and SQL statement

order, a transaction commit can cause the LRS to be closed.

Memory usage, since the partial results are all stored in the session until the session expires.

Needless to say, the app is now using one EntityManager per request. By comparison, this version

only uses 3 - 5 database connections to handle 150 sessions and the response times are a lot quicker

even with caching disabled and the database being hit for each request. It seems that cursors have

their own set of performance problems too (it never ends!).

https://rogerkeays.com/
https://rogerkeays.com/blog
https://rogerkeays.com/programming
https://rogerkeays.com/sql
https://rogerkeays.com/blog/em_per_session
https://rogerkeays.com/blog/em_per_session
https://rogerkeays.com/ox/webcore/users/UserViewer.xhtml?id=8282

Looks like EntityManager-per-request wins again.

About Roger Keays

Roger Keays is an artist, an engineer, and a student of life. He has no fixed

addressand has leftfootprints on 40-something different countries around the world.

Roger is addicted to surfing. His other interests are music, psychology, languages, the

proper use of semicolons, and finding good food.

