Home » Blog » Programming » Java EE » Packaging Your Facelets in JARS

Packaging Your Facelets in JARs

By Roger Keays, 17 July 2008

Because JSF automatically finds faces-config.xml in your jar files, it provides a neat opportunity for
building a simple jar-based module system for your webapps. All you need is a way to bundle your

templates and resources right? Well, thanks to Facelets it is actually very easy.

Facelets lets you implement your own ResourceResolver which is used to find templates. The
following simple implementation extends the default resolver to check the classpath for the required

template.

/**

* This facelets resource resolver allows us to put facelet files in jars
* on the classpath, as well as the context root of the webapp.
*
* @ut hor roger
*/
public class Tenpl at eResol ver extends Def aul t Resour ceResol ver
i npl ement s Resour ceResol ver {
private Logger |og = Logger.getLogger(getC ass().getNanme());

/** first check the context root, then the classpath */
public URL resolveUrl (String path) {

|l og.fine("Resolving URL " + path);

URL url = super.resolvelUrl (path);

if (url == null) {

/* classpath resources don't start with / */
if (path.startsWth("/")) {
path = path. substring(l);

}
url = Thread. current Thread(). get Cont ext Cl assLoader ().
get Resour ce(pat h);
}
return url;

You enable this resolver by configuring your web.xml with:

https://rogerkeays.com/
https://rogerkeays.com/blog
https://rogerkeays.com/programming
https://rogerkeays.com/java-jsf
https://rogerkeays.com/blog/packaging-your-facelets-in-jars
https://rogerkeays.com/blog/packaging-your-facelets-in-jars
https://rogerkeays.com/ox/webcore/users/UserViewer.xhtml?id=8282
http://facelets.dev.java.net

<cont ext - par an>

<par am nanme>f acel et s. RESOURCE RESOLVER</ par am nanme>

<par am val ue>au. com ni nt havenue. webcor e. appl i cati on. Tenpl at eResol ver </ par am\
</ cont ext - par an®

That only gets us half way there, because we cannot use the ResourceResolver to serve external css,
image and javascript resources. In order to do that, you can use a servlet which you will have to map
one way or another in your web.xml. At Sunburnt, we don't actually map the servlet, but forward to it
from a filter if a resource isn't found on the context path. The servlet looks like this:

[**
* This servlet fetches a static resource fromthe classpath. Access to
* java class files is restricted.

*/
public class C asspathServl et extends HttpServlet {
private Logger |og = Logger.getLogger(getC ass().getName());

[** default constructor */
public C asspat hServlet() {}

/** serve the file fromthe classpath */
@verride
public void doGet (HttpServl et Request request,
Ht t pSer vl et Response response) throws Servl et Exception, | OException

[* if this servlet is not mapped to a path, use the request URl */
String path = request. getPat hl nfo();
if (path == null) {
path = request. get Request URI (). substri ng(
request. get Context Path().length());

/* failure conditions */
if (path.endsWth(".class")) {
response. sendError (403, path + " denied");

return;

/* find the resource */
| og. fine("Looking for " + path + " on the classpath");

URL resource = Thread. current Thread(). get Cont ext Cl assLoader ().
get Resour ce(pat h. substring(1));
if (resource == null) {

response. sendError (404, path + not found on cl asspath");

} else {

/* check nodification date */

URLConnection connection = resource.openConnection();

I ong | ast Modified = connecti on. get Last Modi fied();

| ong ifMbdifiedSince = request. get Dat eHeader ("1 f-Mdified-Si nce");

if (ifModifiedSince = -1 && lastModified <= ifMdifiedSince) {
response. set St at us(H t pSer vl et Response. SC_NOT_MODI Fl ED) ;
return;

}

/* wite to response */
response. set Cont ent Type(get Servl et Cont ext (). get M neType(path));
Qut put St ream out = new Buf f er edQut put St r eam(
response. get Qut put Stream(), 512);
I nput Stream i n = new Buf f eredl nput St ream(
resource. openStrean(), 512);

try {
int |en;
byte[] data = new byte[512];
while ((len = in.read(data)) '= -1) {
out.wite(data, 0, len);
}
} finally {
out.close();
in.close();
if (connection.getlnputStream() !'= null) {

connection. getl nput Strean().cl ose();

}
} /* doGet() */

Finally, you'll need to remember to build your jar with the resources included. We do this using maven
by adding the following in the <build> section (after dependencies):

<bui | d>
<r esour ces>
<resour ce><di rect ory>src/ mai n/ resour ces</ di rect ory></resour ce>
<r esour ce><di rect ory>src/ mai n/ webapp</ di rect ory></r esource>
</ resources>
</ bui | d>

That's the basic idea, | hope you followed along. There are a few things you should be aware of
though:

® Relative URLs will be resolved from the same source. i.e. You can't use a relative URL inside a
jar to resolve a template on the filesystem. That's only really a problem if you want your taglib in

the jar but the actual tag files on the filesystem.
® This resolver may leak file handles if you are using facelets < 1.1.15 (due soon?). See Facelets

Issue #278.

The JSR314 expert group have talked briefly about including something like this for JSF 2.0. | suspect
it'll probably be possible in one way or another since it's the sort of thing you need for bundling
Facelets-based components.

About Roger Keays

= Roger Keays is an artist, an engineer, and a student of life. He has no fixed

addressand has leftfootprints on 40-something different countries around the world.

Roger is addicted to surfing. His other interests are music, psychology, languages, the
proper use of semicolons, and finding good food.

https://facelets.dev.java.net/issues/show_bug.cgi?id=278
https://facelets.dev.java.net/issues/show_bug.cgi?id=278

