
 » Home » Blog » Programming » SQL The Only DAO You'll Ever Need

The Only DAO You'll Ever Need
By , Roger Keays 29 May 2007

The Data Access Object (DAO) is a pattern which, I believe, is way overused. Basically the idea is to

delegate all your persistence operations to a wrapper object to make it easier to change persistence

technologies. In a webapp the DAO serves the dual purpose of being a container for objects and

persistence operations which can be invoked on them. For this reason, people often extend the

pattern to have one DAO per entity, so has a , a etc Customer CustomerDAO Product ProductDAO

etc etc.

This seemed like overkill to me. What I really wanted is to be able to write a webapp which consisted

(in it's entirety) only of entity classes and CRUD templates for those entities.

To achieve this, I created an class with generic add, update and delete methods which are EntityDAO

invoked by a JSF . These methods simply call the corresponding persistence <h:commandButton/>

operation on the contained object:

public class EntityDAO {

 EntityManager em;

 Object current;

 public void addEntity(ActionEvent e) {

 em.getTransaction().begin();

 em.persist(current);

 em.getTransaction().commit();

 }

 public void updateEntity(ActionEvent e) {

 em.getTransaction().begin();

 setCurrent(em.merge(current));

 em.getTransaction().commit();

 }

 ...

}

This isn't rocket science, and it doesn't allow you to manage tricky persistence relationships, but it is

pretty useful a lot of the time. The one requirement that this idea relies on, is that there is some

mechanism to set the object as required. This can be done a few different ways. EntityDAO.current

For new objects, you can use the managed bean facility:

https://rogerkeays.com/
https://rogerkeays.com/blog
https://rogerkeays.com/programming
https://rogerkeays.com/sql
https://rogerkeays.com/blog/the-only-dao-you-ll-ever-need
https://rogerkeays.com/blog/the-only-dao-you-ll-ever-need
https://rogerkeays.com/ox/webcore/users/UserViewer.xhtml?id=8282

<h:commandButton value="Create Customer">

 <f:setPropertyActionListener target="${entities.current}" value="${newCustomer}"/>

 <f:actionListener type="seamless.actions.AddEntity"/>

</h:commandButton>

In this example, is a managed bean, and the is a wrapper ${newCustomer} AddEntity ActionListener

for the method on the . It just allows us to chain s.addEntity() EntityDAO ActionListener

Update and delete operations are a little more difficult though, because you need to make sure a

specific object is set as current, not just any old new one. This is one reason why people use separate

DAOs for each class. They just shove them in the session scope to keep a reference to the object to

be operated on. This fails with tabbed browsing of course.

For these sorts of conversation-scoped operations, I've implemented a component <s:restoreEntity/>

which renders a field in the form. It differs from a standard <input type="hidden"/> <h:inputHidden/>

because it applies its value during the Apply Request Values phase. This is earlier in the lifecycle than

the standard component which only sets its value during the Update Model phase. It is necessary

because other components may rely on the being available early in the lifecycle.EntityDAO.current

Your update form could now look something like this:

<h:form>

 <s:restoreEntity/>

 Name: <h:inputText value="${entities.current.name}"/>

 Phone: <h:inputText value="${entities.current.phone}"/>

 <h:commandButton value="Update" actionListener="${entities.updateEntity}"/>

</h:form>

The component relies on generic converter for JPA entities to marshal the entity to <s:restoreEntity/>

and from a string, but this will be the topic of another blog because its a handy feature itself.

All this code is available through the if you want to use it for yourself. Furnace Webapp Framework

There is also an available for download.example webapp using the Entity DAO

About Roger Keays

Roger Keays is an artist, an engineer, and a student of life. He has no fixed

addressand has leftfootprints on 40-something different countries around the world.

Roger is addicted to surfing. His other interests are music, psychology, languages, the

proper use of semicolons, and finding good food.

https://rogerkeays.com/products/furnace
https://rogerkeays.com/products/furnace/example

