Home » Blog » Programming » Java EE » JSFE Error Pages That Actually Work

JSF Error Pages That Actually Work

By Roger Keays, 27 October 2012

Here is an annoying problem using JSF error
pages for JSF requests. Everything looks jus
fine,HttpServletResponse.sendError() sends the

error page, but JSF continues processing

starts throwing exceptions after the respon

is complete. This happens even if you call ﬁITOI' 404

FacesContext.responseComplete(), and also wheﬁ‘““d"f“x

the error page is sent at different stages of the’ 77 o= meies -

JSF lifecycle. * Mundsfox | Home
« Mundobox | Shows
& MundoFox Los Mis Vistos
¢ MundoFox | Ultimos Wideos

It seems like invoking the FacesServlet for
sendError() breaks the state of the original ~ mndcforcom
FacesContext.

When sending an error during view build | get
this exception:

java.l ang. Nul | Poi nt er Excepti on

at comsun.faces.facelets.util.Resource. get ResourceUr| (Resource.java: 1(
at com sun. faces.facel ets.inpl.DefaultResourceResol ver.resol veUr | ( Def at
at com sun. faces. facel ets.inpl.Defaul t Facel et Factory. resol veURL( Def aul t
at com sun. faces.facel ets.inpl.DefaultFacel et. getRel ati vePat h( Def aul t F¢
at com sun.faces.facel ets.inpl.Defaul tFacel et.include(Defaul tFacelet.]j:¢
at com sun. faces.facel ets.inpl.DefaultFacel et Context.includeFacel et ( Def
at com sun. faces. facel ets. tag. ui . Decor at eHandl er. appl y( Decor at eHandl er .
at com sun. faces. facel ets. conpil er. NanmespaceHandl er. appl y( NanmespaceHanc
at com sun. faces. facel ets. conpil er. Encodi ngHandl er. appl y( Encodi ngHandl ¢
at comsun.faces.facel ets.inpl.DefaultFacel et. appl y(Defaul t Facel et.|j ave
at com sun. faces. application.view Facel et Vi ewHandl i ngSt r at egy. bui | dVi e\
at com sun. faces.|ifecycl e. Render ResponsePhase. execut e( Render ResponsePt
at comsun.faces.lifecycl e. Phase. doPhase( Phase. j ava: 101)

and if renderView() has already started, it gets even more obscure:

java. | ang. Nul | Poi nt er Excepti on
at org.richfaces. skin. SkinFactoryl npl.cl ear Ski nCaches( Ski nFact oryl npl . j


https://rogerkeays.com/
https://rogerkeays.com/blog
https://rogerkeays.com/programming
https://rogerkeays.com/java-jsf
https://rogerkeays.com/jsf-error-pages-that-actually-work
https://rogerkeays.com/jsf-error-pages-that-actually-work
https://rogerkeays.com/ox/webcore/users/UserViewer.xhtml?id=8282

at
at
at
at
at
at
at
at
at

at

org. richfaces. skin. Ski nFact or yPr eRender Vi ewLi st ener . processEvent ( Sk
j avax. faces. event. Syst enEvent . processLi st ener ( Syst enEvent . j ava: 106)
com sun. faces. appl i cation. Applicationl npl.processLi steners(Applicati
com sun. faces. appl i cation. Applicationl npl.invokelLi st enersFor (Applice
com sun. faces. application. Applicationl npl.publishEvent (Applicationlr
com sun. faces. appl i cation. Applicationlnpl. publishEvent (Applicationlr
com sun. faces. | i fecycl e. Render ResponsePhase. execut e( Render ResponsePt
com sun. faces. |ifecycl e. Phase. doPhase( Phase. java: 101)

com sun. faces.lifecycle.Lifecyclelnpl.render(Lifecyclelnpl.java: 139)

j avax. f aces. webapp. FacesServl et . servi ce( FacesServl et.java: 594) P

JSF continues to RENDER phase in an all messed up drunken way.

® (Calling FacesContext.responseComplete() from your managed bean's @PostConstruct method doesn't

help because rendering has already started.

® Additionally, calling FaceContext.responseComplete() from a preRenderView listener just doesn't work.

It looks like the preRenderView event is added during view construction which happens in the
Render View phase anyway. Could this be a regression bug?

® Finally, throwing an exception to be caught by an error filter or exception handler doesn't resolve

the problem because JSF swallows the exception from @PostConstruct and rethrows its own.

| couldn't believe something so basic should be so complicated.

Well it turns out there is a fairly simple solution.Calling reponse.setStatus() instead of response.

sendError() does not interrupt the JSF lifecycle. This works nicely, except the original view is still

rendered in spite of the error.

So all we have to do is manually render a new view (the error page) as soon as the error occurs.

This doesn't break JSF state and lets the lifecycle finish without all those random exceptions.

Here's what I'm talking about.

/**
*
*

*

*/

The standard request.sendError() breaks JSF state if it is called

too late in the lifecycle. This nethod does the sane thing but

copes better with interrupting the current request.

public void sendError(FacesContext faces, int code, String nessage) {
try {

faces. get Ext er nal Cont ext (). set ResponseSt at us(code) ;

faces. get Ext er nal Cont ext (). get Request Map() . put
("javax.servlet.error.nessage", nessage);

Vi ewHandl er views = faces. get Application().getVi ewHandl er();


http://java.net/jira/browse/JAVASERVERFACES-1136

String tenplate = "/error/" + code + ".xhtm";
U Vi ewRoot view = views. createViewfaces, tenplate);
faces. set Vi ewRoot (Vi ew) ;
Vi ews. get Vi ewDecl ar ati onLanguage(faces, tenplate).
bui | dVi ew( f aces, view);
vi ews. render Vi ew(f aces, view);
faces. responseConpl ete();
} catch (1 CException ioe) {
t hrow new Runti neException(i oe);

This method works any time before the view has started rendering. Normally it should be triggered
during the view build by an event or managed bean @PostConstruct method. In fact it also works

during the render phase but you get a mixed up response (see the comments below).
Hope you find that useful.

NB: if you use this method yourself, don't forget to update the code with the correct path of your error

templates.

About Roger Keays

= Roger Keays is an artist, an engineer, and a student of life. He has no fixed

addressand has leftfootprints on 40-something different countries around the world.

Roger is addicted to surfing. His other interests are music, psychology, languages, the

proper use of semicolons, and finding good food.



