
 » Home » Blog » Programming » Java EE NoVDL: Write your JSF views in pure Java

NoVDL: Write your JSF views in pure Java
By , Roger Keays 17 March 2016

NoVDL is a View Description Language that

makes your JSF views more robust by

implementing them in Java. By using Java to

write your views you automatically gain many

features.

type safety

compile-time code verification

stack traces that actually make sense

ide autocomplete support

ide refactoring support

java static methods for composite

components

java function composition for decorating

views

java inheritance for decorating views

java object references to access

components

java method references to invoke action listeners

java namespacing for component libraries

high performance

less reliance on flaky EL expressions

less reliance on managed beans

no XML configuration, taglibs, or magic annotations

one language to learn instead of three (Java + XML + EL)

Example View

public class OrderForm extends BasePage implements Activity {

https://rogerkeays.com/
https://rogerkeays.com/blog
https://rogerkeays.com/programming
https://rogerkeays.com/java-jsf
https://rogerkeays.com/novdl-write-your-jsf-views-in-pure-java
https://rogerkeays.com/novdl-write-your-jsf-views-in-pure-java
https://rogerkeays.com/ox/webcore/users/UserViewer.xhtml?id=8282

 @Override

 public void buildView(FacesContext faces, UIViewRoot root) {

 List<Product> products = ProductDAO.getAllProducts();

 UIPanelGroup main =

 h_panelGroup().children(

 f_verbatim("<h1>Order Form</h1>"),

 h_form().id("order").children(

 h_dataTable().id("products").value(products).var("product").width("100%").children(

 h_column().header(f_verbatim("Description")).children(

 h_outputLink().id("link").valuex("${product.page.linkURL}").children(

 h_outputText().valuex("${product.description}")

)

),

 h_column()

 .header(f_verbatim("Quantity"))

 .children(h_inputText().id("quantity").converter(new IntegerConverter())

 .footer(h_commandButton().id("submit").value("Create Order")

 .actionListener(createOrder()))

)

)

)

);

 /*

 * If your master template is implemented in java you'll create a

 * separate function to build it, e.g.

 *

 * build_master_view(faces, root, main);

 *

 * NoVDL also includes a function to execute a facelet which can

 * then include the partial view you created here using a

 * binding=".." attribute.

 */

 build_from_facelet(faces, root, getMasterTemplate());

 }

}

Mapping Routes

The current implementation maps the view id to its Java implementation by converting the url path to a

class name. E.g.

http://localhost/com/example/Demo.xhtml

is routed to the class

com.example.Demo

If you need different functionality, you could rewrite get_view_class_name() and recompile NoVDL. If

there is enough demand, I'll make this function configurable.

Value Expressions

NoVDL allows value expressions to be set by using the setter method which ends in . e.g.x

h_outputText().value("Hello World"); // or

h_outputText().valuex("${bean.greeting}");

This was chosen partly because the NoVDL components are automatically generated from the JSF

API, and partly because EL is discouraged in NoVDL. Ideally, we'd like to be able to implement

ValueExpressions using lambda functions.

Composite Components with a Static Factory

It is very easy to make composite components using a static factory method.

public static UIPanel create_data_grid(Data current) {

 HPanelGrid grid = h_panelGrid().id("ox_related").columns(4);

 for (Match match : data.getMatches()) {

 HPanelGroup panel = h_panelGroup().id("ox_related_" + match.getId());

 if (match.getThumbnail() != null) {

 panel.children(

 h_outputLink().value(match.getLinkURL()).children(

 h_graphicImage().value(match.getThumbnail())

)

);

 }

 panel.children(

 f_verbatim("<p>"),

 h_outputLink().value(match.getLinkURL()).children(

 h_outputText().value(match.getTitle())

),

 f_verbatim("</p>")

);

 grid.getChildren().add(panel);

 }

 return grid;

}

This is a good example of why XML is a questionable choice for user interfaces. Is it declarative code

or is it procedural? Actually, it's a mixture, and there is not much advantage to declarative languages

when you start to mix in procedural (or functional) code.

Decorating Views using Functions

Same idea as above. e.g.

public static void decorate_view(FacesContext faces, UIViewRoot root,

 UIHead head, UIComponent content) {

 root.getChildren().add(head);

 root.getChildren().add(

 h_body().children(

 content

);

}

Decorating Views using Inheritance

Function composition is preferred over inheritance. If you like inheritance, all you need to do is make

an abstract superclass that defines the sections of your view. e.g.

public abstract class MasterView implements Activity {

 @Override

 public void buildView(FacesContext faces, UIViewRoot root) {

 root.getChildren().add(build_head(faces));

 root.getChildren().add(

 h_body().children(

 build_content(faces)

);

 }

 public abstract UIHead build_head(FacesContext faces);

 public abstract UIComponent build_content(FacesContext faces);

}

Mixing Facelets and Java Views

Use the function

build_from_facelet(faces, root, template);

to execute a Facelet from your buildView function. Inside that template, you'll have to reference the

components you built using NoVDL. e.g.

<h2>Current Data</h2>

<div class="web_noprint">

 <!-- datagrid is prebuilt with NoVDL -->

 <h:panelGroup binding="${someBean.datagrid}"/>

</div>

Editing Views on the Fly

Facelets lets you edit views on the fly without recompiling or restarting theapplication. You should be

able to use HotSwapAgentor JRebel to achieve the same thing with NoVDL.

Installation

NoVDL is automaticallydetected when you add the following dependency. View IDs that cannot be

mapped to Java implementations will fall back on the default view decoration language (normally

Facelets).

<dependency>

 <groupId>au.com.ninthavenue.jamaica.faces</groupId>

 <artifactId>novdl</artifactId>

 <packaging>jar</packaging>

 <version>1.0</version>

</dependency>

Note: NoVDL requires Java 8.

Get the Source

https://github.com/rogerkeays/novdl

Spend some time experimenting with NoVDL and let me know how it works for you.

About Roger Keays

http://www.hotswapagent.org
https://github.com/rogerkeays/novdl

Roger Keays is an artist, an engineer, and a student of life. He has no fixed

addressand has leftfootprints on 40-something different countries around the world.

Roger is addicted to surfing. His other interests are music, psychology, languages, the

proper use of semicolons, and finding good food.

